Bayesian networks for transport decision scenarios

نویسنده

  • Alexander Holland
چکیده

Bayesian networks are formal graphical languages for representation and communication of decision scenarios requiring reasoning under uncertainty. We will analyze Bayesian networks and outline their advantages and disadvantages. Based on these assumptions we discuss transport decision scenarios under uncertainty. A transport planning approach like the postal delivery demonstrates a good framework for building and handling with normative systems like Bayesian networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian decision model for drought management in rainfed wheat farms of North East Iran

Drought is a feature of climate that can occur in virtually all climates. Therefore, it is aninevitable global but site-specific phenomenon which requires tools to predict and strategies andoptions to cope with it. In this research, the ability and effectiveness of the Bayesian DecisionNetworks (BDNs) approach in decision-making and evaluating drought management options forrainfed wheat product...

متن کامل

A Bayesian model decision support system: dryland salinity management application

Addressing environmental management problems at catchment scales requires an integrated modelling approach, in which key bio-physical and socio-economic drivers, processes and impacts are all considered. Development of Decision Support Systems (DSSs) for environmental management is rapidly progressing. This paper describes the integration of physical, ecological, and socio-economic components i...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

System architecture design based on a Bayesian Networks method

The objective of the proposed method is to improve the decision making for system architecture design. In this purpose, Bayesian Networks (BN) models are defined in order to take into account the availability parameters of components and they economical aspects. The model allows a decision-making aide to rationalise the design of system architecture. Based on BN inference scenarios are simulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003